Dealing with Uncertainty

- The world is not a well-defined place.
- There is uncertainty in the facts we know:
 - What's the temperature toady? Imprecise measures
 - Is our Modi good PM? Imprecise definitions
 - Where is the pit? Imprecise knowledge
- People make successful decisions all the time anyhow.

Sources of Uncertainty

• Uncertain data

 missing data, unreliable, ambiguous, imprecise representation, inconsistent, subjective, derived from defaults, noisy...

• Uncertain knowledge

- Multiple causes lead to multiple effects
- Incomplete knowledge of causality in the domain
- Probabilistic/stochastic effects

• Uncertain knowledge representation

- restricted model of the real system
- limited expressiveness of the representation mechanism

inference process

- Derived result is formally correct, but wrong in the real world
- New conclusions are not well-founded (eg, inductive reasoning)
- Incomplete, default reasoning methods

Reasoning Under Uncertainty

- So how do we do reasoning under uncertainty and with inexact knowledge?
 - heuristics
 - ways to mimic heuristic knowledge processing methods used by experts
 - empirical associations
 - experiential reasoning
 - based on limited observations
 - probabilities
 - objective (frequency counting)
 - subjective (human experience)

Decision making with uncertainty

- Rational behavior:
 - For each possible action, identify the possible outcomes
 - Compute the **probability** of each outcome
 - Compute the **utility** of each outcome
 - Compute the probability-weighted (expected)
 utility over possible outcomes for each action
 - Select the action with the highest expected utility (principle of Maximum Expected Utility)

Some Relevant Factors

- expressiveness
 - can concepts used by humans be represented adequately?
 - can the confidence of experts in their decisions be expressed?
- comprehensibility
 - representation of uncertainty
 - utilization in reasoning methods
- correctness
 - probabilities
 - relevance ranking
 - long inference chains
- computational complexity
 - feasibility of calculations for practical purposes
- reproducibility
 - will observations deliver the same results when repeated?

Probability theory

- Random variables
 - Domain
- Atomic event: complete specification of state
- Prior probability: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables

- Alarm, Burglary, Earthquake
 - Boolean (like these), discrete, continuous
- Alarm=True Burglary=True Earthquake=False alarm burglary earthquake
- P(Burglary) = .1
- P(Alarm, Burglary) =

	alarm	¬alarm
burglary	.09	.01
¬burglary	.1	.8

Belief and Disbelief

- measure of belief
 - degree to which hypothesis H is supported by evidence E
 - -MB(H,E) = 1 IF P(H) =1 (P(H|E) - P(H)) / (1- P(H)) otherwise
- measure of disbelief
 - degree to which doubt in hypothesis H is supported by evidence E

-MB(H,E) = 1 IF P(H) =0 (P(H) - P(H|E)) / P(H)) otherwise

Certainty Factor

• certainty factor CF

 – ranges between -1 (denial of the hypothesis H) and 1 (confirmation of H)

• CF = (MB - MD) / (1 - min (MD, MB)

Advantages of Certainty Factors

- Advantages
 - simple implementation
 - reasonable modeling of human experts' belief
 - expression of belief and disbelief
 - successful applications for certain problem classes
 - evidence relatively easy to gather
 - no statistical base required

Problems of Certainty Factors

- Problems
 - partially ad hoc approach
 - theoretical foundation through Dempster-Shafer theory was developed later
 - combination of non-independent evidence unsatisfactory
 - new knowledge may require changes in the certainty factors of existing knowledge
 - certainty factors can become the opposite of conditional probabilities for certain cases
 - not suitable for long inference chains

Fuzzy Logic

Fuzzy Logic

- approach to a formal treatment of uncertainty
- relies on quantifying and reasoning through natural (or at least non-mathematical) language
- Rejects the underlying concept of an excluded middle: things have a degree of membership in a concept or set
 - Are you tall?
 - Are you rich?
- As long as we have a way to formally describe degree of membership and a way to combine degrees of memberships, we can reason.

Fuzzy Set Example

Fuzzy vs. Crisp Set

481/W02/Slides/Uncertainty.p

Fuzzy Reasoning

- In order to implement a fuzzy reasoning system you need
 - For each variable, a defined set of values for membership
 - Can be numeric (1 to 10)
 - Can be linguistic
 - really no, no, maybe, yes, really yes
 - tiny, small, medium, large, gigantic
 - good, okay, bad
 - And you need a set of rules for combining them
 - Good and bad = okay.

Fuzzy Inference Methods

• Lots of ways to combine evidence across rules

- Poss(B|A) = min(1, (1 - Poss(A) + Poss(B)))

- implication according to Max-Min inference
- also Max-Product inference and other rules
- formal foundation through Lukasiewicz logic
 - extension of binary logic to infinite-valued logic
- Can be enumerated or calculated.

Some Additional Fuzzy Concepts

- Support set: all elements with membership > 0
- Alpha-cut set: all elements with membership greater than alpha
- Height: maximum grade of membership
- Normalized: height = 1

Some typical domains

- Control (subways, camera focus)
- Pattern Recognition (OCR, video stabilization)
- Inference (diagnosis, planning, NLP)

Advantages and Problems of Fuzzy Logic

- advantages
 - general theory of uncertainty
 - wide applicability, many practical applications
 - natural use of vague and imprecise concepts
 - helpful for commonsense reasoning, explanation
- problems
 - membership functions can be difficult to find
 - multiple ways for combining evidence
 - problems with long inference chains

Uncertainty: Conclusions

- In AI we must often represent and reason about uncertain information
- This is no different from what people do all the time!
- There are multiple approaches to handling uncertainty.
- Probabilistic methods are most rigorous but often hard to apply; Bayesian reasoning and Dempster-Shafer extend it to handle problems of independence and ignorance of data
- Fuzzy logic provides an alternate approach which better supports ill-defined or non-numeric domains.
- Empirically, it is often the case that the main need is some way of expressing "maybe". Any system which provides for at least a three-valued logic tends to yield the same decisions.