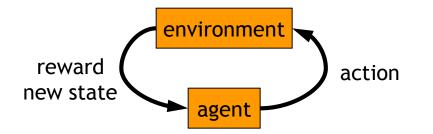


Reinforcement Learning

Faculty R. Rajkumar School of Computing | SRMIST

Machine Learning

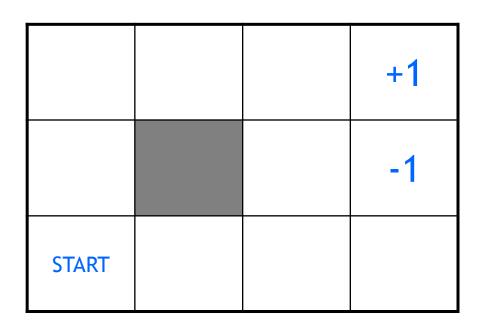
- Supervised learning
 - classification, regression
- Unsupervised learning
 - clustering
- Reinforcement learning
 - more general than supervised/unsupervised learning
 - learn from interaction w/ environment to achieve a goal



Reinforcement Learning

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

Robot in a room

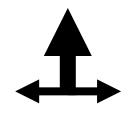


actions: UP, DOWN, LEFT, RIGHT

UP 80%

10%

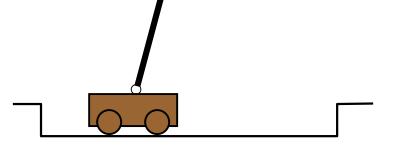
move UP move LEFT 10% move **RIGHT**



- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?
- what if the actions were deterministic?

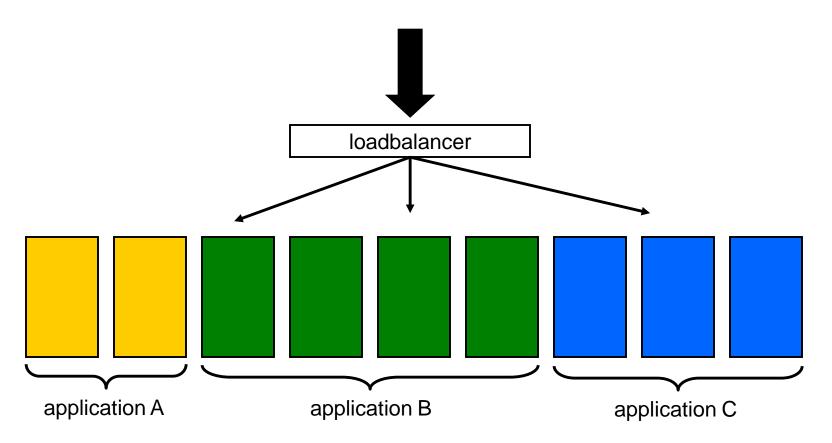
Other examples /

- pole-balancing
- TD-Gammon [Gerry Tesauro]
- helicopter [Andrew Ng]



- no teacher who would say "good" or "bad"
 - is reward "10" good or bad?
 - rewards could be delayed
- similar to control theory
 - more general, fewer constraints
- explore the environment and learn from experience
 - not just blind search, try to be smart about it

Resource allocation in datacenters

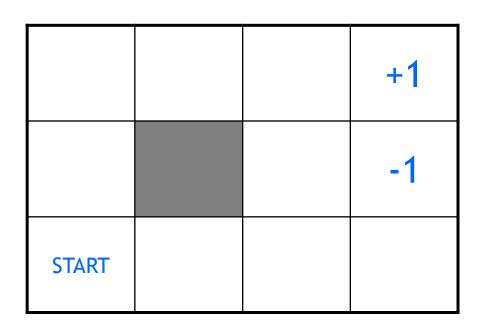


- A Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation
 - Tesauro, Jong, Das, Bennani (IBM)
 - ICAC 2006

Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

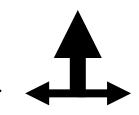
Robot in a room



actions: UP, DOWN, LEFT, RIGHT

UP

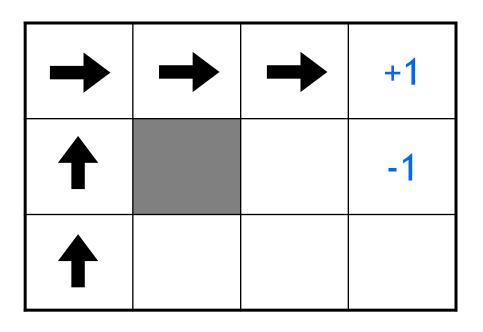
80% move UP10% move LEFT10% move RIGHT



reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

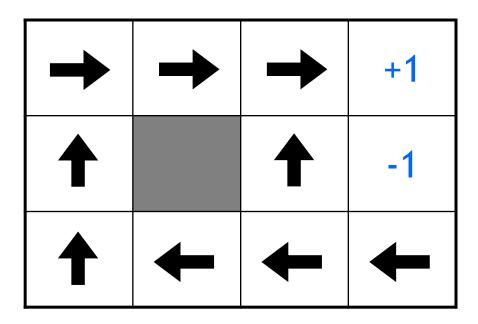
- states
- actions
- rewards
- what is the solution?

Is this a solution?

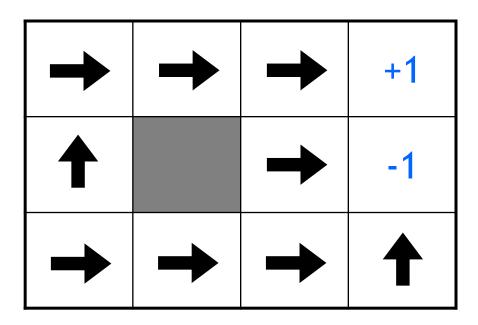


- only if actions deterministic
 - not in this case (actions are stochastic)
- solution/policy
 - mapping from each state to an action

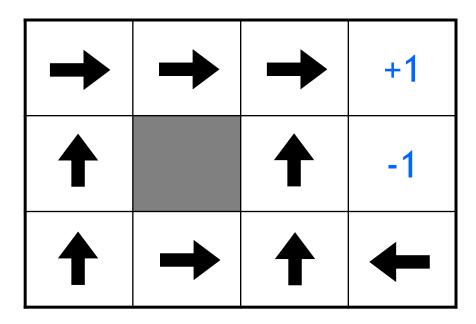
Optimal policy



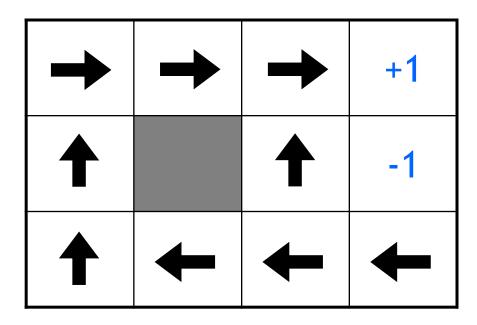
Reward for each step: -2



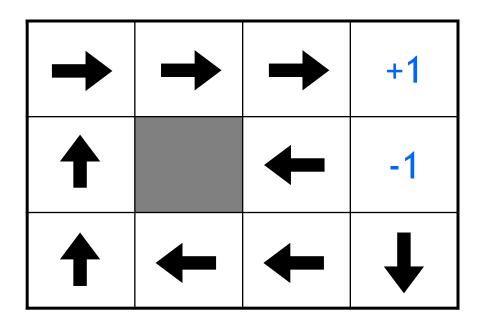
Reward for each step: -0.1



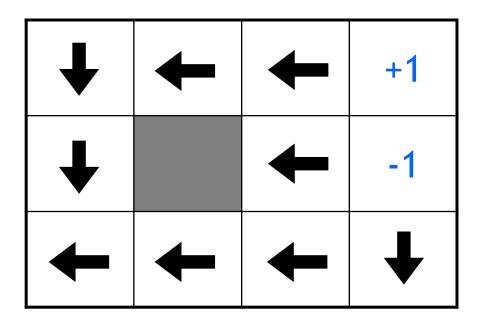
Reward for each step: -0.04



Reward for each step: -0.01

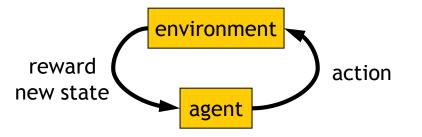


Reward for each step: +0.01



Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S₀
- transition model P(s,a,s')
 - P([1,1], up, [1,2]) = 0.8
- reward function r(s)
 - r([4,3]) = +1
- goal: maximize cumulative reward in the long run
- policy: mapping from S to A
 - $\pi(s)$ or $\pi(s,a)$ (deterministic vs. stochastic)
- reinforcement learning
 - transitions and rewards usually not available
 - how to change the policy based on experience
 - how to explore the environment

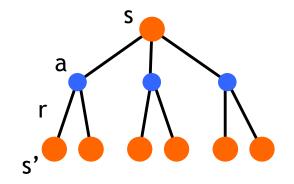


Computing return from rewards

- episodic (vs. continuing) tasks
 - "game over" after N steps
 - optimal policy depends on N; harder to analyze
- additive rewards
 - $V(s_0, s_1, ...) = r(s_0) + r(s_1) + r(s_2) + ...$
 - infinite value for continuing tasks
- discounted rewards
 - $V(s_0, s_1, ...) = r(s_0) + \gamma^* r(s_1) + \gamma^{2*} r(s_2) + ...$
 - value bounded if rewards bounded

Value functions

- state value function: $V^{\pi}(s)$
 - expected return when starting in s and following π
- state-action value function: $Q^{\pi}(s,a)$
 - expected return when starting in *s*, performing *a*, and following π
- useful for finding the optimal policy
 - can estimate from experience
 - pick the best action using $Q^{\pi}(s,a)$



• Bellman equation

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[r^{a}_{ss'} + \gamma V^{\pi}(s') \right] = \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$

Optimal value functions

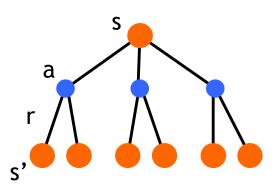
- there's a set of optimal policies
 - V^{π} defines partial ordering on policies
 - they share the same optimal value function

 $V^*(s) = \max_{\pi} V^{\pi}(s)$

• Bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s'} P^a_{ss'} \left[r^a_{ss'} + \gamma V^*(s') \right]$$

- system of n non-linear equations
- solve for V*(s)
- easy to extract the optimal policy
- having Q*(s,a) makes it even simpler
 π*(s) = arg max Q*(s,a)



Outline

- examples
- defining an RL problem
 - Markov Decision Processes
- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

Dynamic programming

- main idea
 - use value functions to structure the search for good policies
 - need a perfect model of the environment
- two main components
 - policy evaluation: compute V^{π} from π
 - policy improvement: improve π based on V^{π}
 - start with an arbitrary policy
 - repeat evaluation/improvement until convergence

Q-learning

- before: on-policy algorithms
 - start with a random policy, iteratively improve
 - converge to optimal
- Q-learning: off-policy
 - use any policy to estimate Q

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

- Q directly approximates Q* (Bellman optimality eqn)
- independent of the policy being followed
- only requirement: keep updating each (s,a) pair
- Sarsa

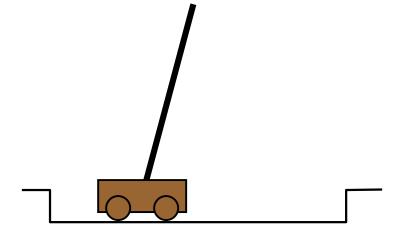
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

State representation

- pole-balancing
 - move car left/right to keep the pole balanced
- state representation
 - position and velocity of car
 - angle and angular velocity of pole
- what about *Markov property*?
 - would need more info
 - noise in sensors, temperature, bending of pole

• solution

- coarse discretization of 4 state variables
 - left, center, right
- totally non-Markov, but still works



Function approximation

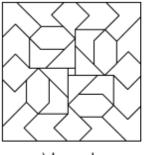
- represent V_t as a parameterized function
 - linear regression, decision tree, neural net, ...
 - linear regression: $V_t(s) = \vec{\theta}_t^T \vec{\phi}_s = \sum_{i=1}^n \theta_t(i) \phi_s(i)$
- update parameters instead of entries in a table
 - better generalization
 - fewer parameters and updates affect "similar" states as well
- TD update

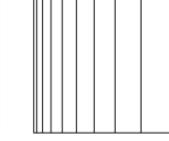
$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$
$$V(s_t) \mapsto r_{t+1} + \gamma V(s_{t+1})$$
$$\mathbf{x} \qquad \mathbf{y}$$

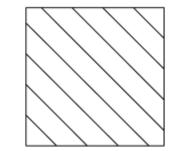
- treat as one data point for regression
- want method that can learn on-line (update after each step)

Features

- tile coding, coarse coding
 - binary features

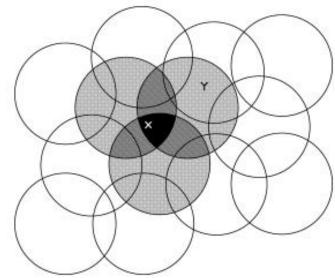




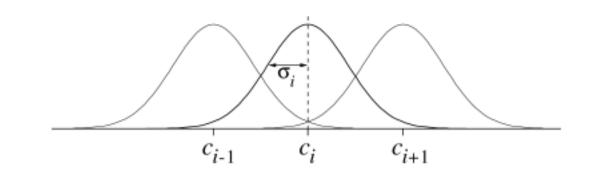


b) Log stripes

c) Diagonal stripes



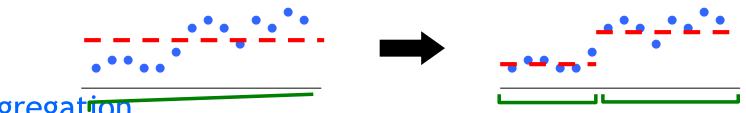
- radial basis functions
 - typically a Gaussian
 - between 0 and 1



[Sutton & Barto, Reinforcement Learning]

Splitting and aggregation

- want to discretize the state space
 - learn the best discretization during training
- splitting of state space
 - start with a single state
 - split a state when different *parts of that state* have different values



- state aggregation
 - start with many states
 - merge states with similar values

Designing rewards

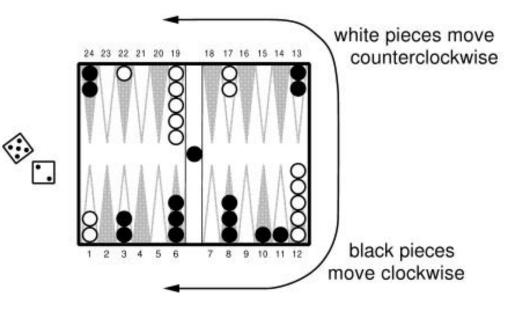
- robot in a maze
 - episodic task, not discounted, +1 when out, 0 for each step
- chess
 - GOOD: +1 for winning, -1 losing
 - BAD: +0.25 for taking opponent's pieces
 - high reward even when lose
- rewards
 - rewards indicate what we want to accomplish
 - NOT how we want to accomplish it
- shaping
 - positive reward often very "far away"
 - rewards for achieving subgoals (domain knowledge)
 - also: adjust initial policy or initial value function

Case study: Back gammon

- rules
 - 30 pieces, 24 locations
 - roll 2, 5: move 2, 5
 - hitting, blocking
 - branching factor: 400
- implementation
 - use $TD(\lambda)$ and neural nets
 - 4 binary features for each position on b
 - no BG expert knowledge

• results

- TD-Gammon 0.0: trained against itself (300,000 games)
 - as good as best previous BG computer program (also by Tesauro)
 - lot of expert input, hand-crafted features
- TD-Gammon 1.0: add special features
- TD-Gammon 2 and 3 (2-ply and 3-ply search)
 - 1.5M games, beat human champion



Summary

- Reinforcement learning
 - use when need to make decisions in uncertain environment
- solution methods
 - dynamic programming
 - need complete model
 - Monte Carlo
 - time-difference learning (Sarsa, Q-learning)
- most work
 - algorithms simple
 - need to design features, state representation, rewards

Demo

https://www.youtube.com/watch?v=aTpJJR1WBuc