
Reinforcement Learning

Faculty

R. Rajkumar

School of Computing | SRMIST

Machine Learning

• Supervised learning

– classification, regression

• Unsupervised learning

– clustering

• Reinforcement learning

– more general than supervised/unsupervised learning

– learn from interaction w/ environment to achieve a goal

environment

agent

actionreward

new state

Reinforcement Learning

• examples

• defining an RL problem

– Markov Decision Processes

• solving an RL problem

– Dynamic Programming

– Monte Carlo methods

– Temporal-Difference learning

Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP

10% move LEFT

10% move RIGHT

• reward +1 at [4,3], -1 at [4,2]

• reward -0.04 for each step

• what’s the strategy to achieve max reward?

• what if the actions were deterministic?

Other examples

• pole-balancing

• TD-Gammon [Gerry Tesauro]

• helicopter [Andrew Ng]

• no teacher who would say “good” or “bad”

– is reward “10” good or bad?

– rewards could be delayed

• similar to control theory

– more general, fewer constraints

• explore the environment and learn from experience

– not just blind search, try to be smart about it

Resource allocation in datacenters

• A Hybrid Reinforcement Learning Approach to Autonomic Resource

Allocation

– Tesauro, Jong, Das, Bennani (IBM)

– ICAC 2006

loadbalancer

application A application B application C

Outline

• examples

• defining an RL problem

– Markov Decision Processes

• solving an RL problem

– Dynamic Programming

– Monte Carlo methods

– Temporal-Difference learning

Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP

10% move LEFT

10% move RIGHT

reward +1 at [4,3], -1 at [4,2]

reward -0.04 for each step

• states

• actions

• rewards

• what is the solution?

Is this a solution?

+1

-1

• only if actions deterministic

– not in this case (actions are stochastic)

• solution/policy

– mapping from each state to an action

Optimal policy

+1

-1

Reward for each step: -2

+1

-1

Reward for each step: -0.1

+1

-1

Reward for each step: -0.04

+1

-1

Reward for each step: -0.01

+1

-1

Reward for each step: +0.01

+1

-1

Markov Decision Process (MDP)

• set of states S, set of actions A, initial state S0

• transition model P(s,a,s’)

– P([1,1], up, [1,2]) = 0.8

• reward function r(s)

– r([4,3]) = +1

• goal: maximize cumulative reward in the long run

• policy: mapping from S to A

– (s) or (s,a) (deterministic vs. stochastic)

• reinforcement learning

– transitions and rewards usually not available

– how to change the policy based on experience

– how to explore the environment

environment

agent

actionreward

new state

Computing return from rewards

• episodic (vs. continuing) tasks

– “game over” after N steps

– optimal policy depends on N; harder to analyze

• additive rewards

– V(s0, s1, …) = r(s0) + r(s1) + r(s2) + …

– infinite value for continuing tasks

• discounted rewards

– V(s0, s1, …) = r(s0) + γ*r(s1) + γ2*r(s2) + …

– value bounded if rewards bounded

Value functions

• state value function: V(s)

– expected return when starting in s and following

• state-action value function: Q(s,a)

– expected return when starting in s, performing a, and following

• useful for finding the optimal policy

– can estimate from experience

– pick the best action using Q(s,a)

• Bellman equation

s

a

s’

r

Optimal value functions

• there’s a set of optimal policies

– V defines partial ordering on policies

– they share the same optimal value function

• Bellman optimality equation

– system of n non-linear equations

– solve for V*(s)

– easy to extract the optimal policy

• having Q*(s,a) makes it even simpler

s

a

s’

r

Outline

• examples

• defining an RL problem

– Markov Decision Processes

• solving an RL problem

– Dynamic Programming

– Monte Carlo methods

– Temporal-Difference learning

Dynamic programming

• main idea

– use value functions to structure the search for good policies

– need a perfect model of the environment

• two main components

– policy evaluation: compute V from

– policy improvement: improve based on V

– start with an arbitrary policy

– repeat evaluation/improvement until convergence

Q-learning

• before: on-policy algorithms

– start with a random policy, iteratively improve

– converge to optimal

• Q-learning: off-policy

– use any policy to estimate Q

– Q directly approximates Q* (Bellman optimality eqn)

– independent of the policy being followed

– only requirement: keep updating each (s,a) pair

• Sarsa

State representation

• pole-balancing

– move car left/right to keep the pole balanced

• state representation

– position and velocity of car

– angle and angular velocity of pole

• what about Markov property?

– would need more info

– noise in sensors, temperature, bending of pole

• solution

– coarse discretization of 4 state variables

• left, center, right

– totally non-Markov, but still works

Function approximation

• represent Vt as a parameterized function

– linear regression, decision tree, neural net, …

– linear regression:

• update parameters instead of entries in a table

– better generalization

• fewer parameters and updates affect “similar” states as well

• TD update

– treat as one data point for regression

– want method that can learn on-line (update after each step)

x y

Features

• tile coding, coarse coding

– binary features

• radial basis functions

– typically a Gaussian

– between 0 and 1

[Sutton & Barto, Reinforcement Learning]

Splitting and aggregation

• want to discretize the state space

– learn the best discretization during training

• splitting of state space

– start with a single state

– split a state when different parts of that state have different values

• state aggregation

– start with many states

– merge states with similar values

Designing rewards

• robot in a maze
– episodic task, not discounted, +1 when out, 0 for each step

• chess
– GOOD: +1 for winning, -1 losing

– BAD: +0.25 for taking opponent’s pieces

• high reward even when lose

• rewards
– rewards indicate what we want to accomplish

– NOT how we want to accomplish it

• shaping
– positive reward often very “far away”

– rewards for achieving subgoals (domain knowledge)

– also: adjust initial policy or initial value function

Case study: Back gammon
• rules

– 30 pieces, 24 locations

– roll 2, 5: move 2, 5

– hitting, blocking

– branching factor: 400

• implementation

– use TD() and neural nets

– 4 binary features for each position on board (# white pieces)

– no BG expert knowledge

• results

– TD-Gammon 0.0: trained against itself (300,000 games)

• as good as best previous BG computer program (also by Tesauro)

• lot of expert input, hand-crafted features

– TD-Gammon 1.0: add special features

– TD-Gammon 2 and 3 (2-ply and 3-ply search)

• 1.5M games, beat human champion

Summary

• Reinforcement learning

– use when need to make decisions in uncertain environment

• solution methods

– dynamic programming

• need complete model

– Monte Carlo

– time-difference learning (Sarsa, Q-learning)

• most work

– algorithms simple

– need to design features, state representation, rewards

Demo

https://www.youtube.com/watch?v=aTpJJR1WBuc

