
P
la

n
n
in

g

Components of a Planning System

• In any general problem solving systems, elementary
techniques to perform following functions are required

– Choose the best rule (based on heuristics) to be applied

– Apply the chosen rule to get new problem state

– Detect when a solution has been found

– Detect dead ends so that new directions are explored.

Advanced Problem Solving Approaches

• In order to solve nontrivial problems, it is necessary to
combine

– Basic problem solving strategies

– Knowledge representation mechanisms

– Partial solutions and at the end combine into complete
problem solution (decomposition)

• Planning refers to the process of computing several steps
of a problem solving before executing any of them.

• Planning is useful as a problem solving technique for
non decomposable problem.

Choose Rules to apply

• Most widely used technique for selecting
appropriate rules is to

– first isolate a set of differences between the
desired goal state and current state,

– identify those rules that are relevant to reducing
these difference,

– if more rules are found then apply heuristic
information to choose out of them.

Apply Rules

• In simple problem solving system, applying rules was

easy as each rule specifies the problem state that

would result from its application.

• In complex problem we deal with rules that specify

only a small part of the complete problem state.

Block World Problem

6

Example: Block World Problem

• Block world problem assumptions

– Square blocks of same size

– Blocks can be stacked one upon another.

– Flat surface (table) on which blocks can be placed.

– Robot arm that can manipulate the blocks. It can hold only one block at a time.

• In block world problem, the state is described by a set of predicates representing the

facts that were true in that state.

• One must describe for every action, each of the changes it makes to the state

description.

• In addition, some statements that everything else remains unchanged is also

necessary.

Actions (Operations) done by Robot

• UNSTACK (X, Y) : [US (X, Y)]

– Pick up X from its current position on block Y. The arm must be
empty and X has no block on top of it.

• STACK (X, Y): [S (X, Y)]

– Place block X on block Y. Arm must holding X and the top of Y
is clear.

• PICKUP (X): [PU (X)]

– Pick up X from the table and hold it. Initially the arm must be
empty and top of X is clear.

• PUTDOWN (X): [PD (X)]

– Put block X down on the table. The arm must have been holding
block X.

• Predicates used to describe the state

– ON(X, Y) - Block X on block Y.

– ONT(X) - Block X on the table.

– CL(X) - Top of X clear.

– HOLD(X) - Robot-Arm holding X.

– AE - Robot-arm empty.

• Logical statements true in this block world.

– Holding X means, arm is not empty

( X) HOLD (X)  ~ AE

– X is on a table means that X is not on the top of any block

( X) ONT (X)  ~ ( Y) ON (X, Y)

– Any block with no block on has clear top

( X) (~ ( Y) ON (Y,X))  CL (X)

Effect of Unstack operation
• The effect of US(X, Y) is described by the following axiom

[CL(X, State)  ON(X, Y, State)] 

[HOLD(X, DO(US (X, Y), State)) 
CL(Y, DO(US(X, Y), State))]

– DO is a function that generates a new state as a result of given action and
a state.

• For each operator, set of rules (called frame axioms) are defined where the
components of the state are

– affected by an operator

• If US(A, B) is executed in state S0, then we can infer that HOLD (A,
S1)  CLEAR (B, S1) holds true, where S1 is new state after Unstack
operation is executed.

– not affected by an operator

• If US(A, B) is executed in state S0, B in S1 is still on the table but we
can’t derive it. So frame rule stating this fact is defined as ONT(Z, S) 
ONT(Z, DO(US (A, B), S))

• Advantage of this approach is that

– simple mechanism of resolution can perform all the
operations that are required on the state
descriptions.

• Disadvantage is that

– number of axioms becomes very large for complex
problem such as COLOR of block also does not
change.

– So we have to specify rule for each attribute.
COLOR(X, red, S) 

COLOR(X, red, DO(US(Y, Z), s))

• To handle complex problem domain, there is a need of
mechanism that does not require large number of
explicit frame axioms.

STRIPS Mechanism

• One such mechanism was used in early robot problem solving system named STRIPS

(developed by Fikes, 1971).

• In this approach, each operation is described by three lists.

– Pre_Cond list contains predicates which have to be true before

operation.

– ADD list contains those predicates which will be true after operation

– DELETE list contain those predicates which are no longer true after

operation

• Predicates not included on either of these lists are assumed to be unaffected by the

operation.

• Frame axioms are specified implicitly in STRIPS which greatly reduces amount of

information stored.

STRIPS – Style Operators

• S (X, Y)

– Pre: CL (Y)  HOLD (X)

– Del: CL (Y)  HOLD (X)

– Add: AE  ON (X, Y)

• US (X, Y)

– Pre: ON (X, Y)  CL (X)  AE

– Del: ON (X, Y)  AE

– Add: HOLD (X)  CL (Y)

• PU (X)

– Pre: ONT (X)  CL (X)  AE

– Del: ONT (X)  AE

– Add: HOLD (X)

• PD (X)

– Pre: HOLD (X)

– Del: HOLD (X)

– Add: ONT (X)  AE

Goal stack method - Example

• Logical representation of Initial and Goal states:

– Initial State: ON(B, A)  ONT(C)  ONT(A)  ONT(D)  CL(B) CL(C) 
CL(D)  AE

– Goal State: ON(C, A)  ON(B, D)  ONT(A)  ONT(D)  CL(C)  CL(B) 
AE

 Initial State Goal State

B

A
C

O

D

C

A

B

D

• We notice that following sub-goals in goal state are also true in initial

state.

ONT(A)  ONT(D)  CL(C)  CL(B)  AE

• Represent for the sake of simplicity - TSUBG.

• Only sub-goals ON(C, A) & ON(B, D) are to be satisfied and finally make

sure that TSUBG remains true.

• Either start solving first ON(C, A) or ON(B, D). Let us solve first ON(C, A).

Goal Stack:

ON(C, A)

ON(B, D)

ON(C, A)  ON(B, D)  TSUBG

• To solve ON(C, A), operation S(C, A) could only be applied.

• So replace ON(C, A) with S(C, A) in goal stack.

Goal Stack:

S (C, A)

ON(B, D)

ON(C, A)  ON(B, D)  TSUBG

• S(C, A) can be applied if its preconditions are true. So add its

preconditions on the stack.

Goal Stack:

CL(A)

HOLD(C) Preconditions of STACK

CL(A)  HOLD(C)

S (C, A) Operator

ON(B, D)

ON(C, A)  ON(B, D)  TSUBG

• Next check if CL(A) is true in State_0.

• Since it is not true in State_0, only operator that could make it true is US(B, A).

• So replace CL(A) with US(B, A) and add its preconditions.

Goal Stack: ON(B, A)

CL(B) Preconditions of UNSTACK

AE

ON(B, A)  CL(B)  AE

US(B, A) Operator

HOLD(C)

CL(A))  HOLD(C)

S (C, A) Operator

ON(B, D)

ON(C, A)  ON(B, D)  TSUBG

• ON(B, A), CL(B) and AE are all true in initial state, so pop these along with

its compound goal.

• Next pop top operator US(B, A) and produce new state by using its ADD

and DELETE lists.

• Add US(B, A) in a queue of sequence ofoperators.

SQUEUE = US (B, A)

State_1:

ONT(A) ONT(C)  ONT(D)  HOLD(B) CL(A)  CL(C) CL(D)

Goal Stack:

HOLD(C)

CL(A))  HOLD(C)

S (C, A) Operator

ON(B, D)

ON(C, A)  ON(B, D)  TSUBG

• To satisfy the goal HOLD(C), two operators can be used e.g., PU(C) or US(C, X),
where X could be any block. Let us choose PU(C) and proceed further.

• Repeat the process. Change in states is shown below.
State_1:

ONT(A) ONT(C)  ONT(D)  HOLD(B) CL(A)  CL(C) CL(D)
SQUEUE = US (B, A)

• Next operator to be popped of is S(B, D). So
State_2:

ONT(A) ONT(C)  ONT(D)  ON(B, D) CL(A)  CL(C) CL(B)AE
SQUEUE = US (B, A), S(B, D)

State_3:
ONT(A)HOLD(C)  ONT(D)  ON(B, D) CL(A) CL(B)

SQUEUE = US (B, A), S(B, D), PU(C)
State_4:

ONT(A)ON(C, A)  ONT(D)  ON(B, D) CL(C) CL(B) AE
SQUEUE = US (B, A), S(B, D), PU(C), S(C, A)

Example 2

Initial State (State0) Goal State

C

A B

A

B

C

Example 2
• The Goal stack method is not efficient for difficult problems such

as Sussman anomaly problem.

• It fails to find good solution.

• Let us consider the Sussman anomaly problem

Initial State (State0) Goal State

C

A B

A

B

C

Initial State: ON(C, A)  ONT(A)  ONT(B)

Goal State: ON(A, B)  ON(B, C)

• Remove CL and AE predicates for the sake of simplicity.

• To satisfy ON(A, B), following operators are applied

US(C, A) , PD(C), PU(A) and S(A, B)

C

A B C

A

B

State_1: ON(B, A)  ONT(C)

• To satisfy ON(B, C), following operators are applied

US(A, B) , PD(A), PU(B) and S(B, C)

State_2: ON(B, C)  ONT(A)

C

A

B
A

B

C

• Finally satisfy combined goal ON(A, B)  ON(B, C).

• Combined goal fails as while satisfying ON(B, C), we have undone

ON(A, B).

• Difference in goal and current state is ON(A, B).

• Operations required are PU(A) and S(A, B)

Goal State

A

B

C

A

B

C

Solution

• The complete plan for solution is as follows:

1. US(C, A)

2. PD (C)

3. PU(A)

4. S(A, B)

5. US(A, B)

6. PD(A)

7. PU(B)

8. S(B, C)

9. PU(A)

10. S(A, B)

• Although this plan will achieve the desired goal, but it is not efficient.

• In order to get efficient plan, either repair this plan or use

some other method.

• Repairing is done by looking at places where operations are

done and undone immediately, such as S(A, B) and US(A,

B).

• By removing them, we get

1. US(C, A)

2. PD (C)

3. PU(B)

4. S(B, C)

5. PU(A)

6. S(A, B)

Planning vs. Problem Solving

• Planning and problem solving (Search) are considered as different
approaches even though they can often be applied to the same problem.

• Basic problem solving searches a state-space of possible actions, starting
from an initial state and following any path that it believes will lead it
the goal state.

• Planning is distinct from this in three key ways:
1. Planning “opens up” the representation of states, goals and actions so that

the planner can deduce direct connections between states and actions.

2. The planner does not have to solve the problem in order (from initial to goal
state) it can suggest actions to solve any sub-goals at anytime.

3. Planners assume that most parts of the world are independent so they can
be stripped apart and solved individually.

Finding a solution

1. Look at the state of the world:

• Is it the goal state? If so, the list of operators so far is the plan to be applied.

• If not, go to Step 2.

2. Pick an operator:

• Check that it has not already been applied (to stop looping).

• Check that the preconditions are satisfied.

If either of these checks fails, backtrack to get another operator.

3. Apply the operator:

1. Make changes to the world: delete from and add to the world state.

2. Add operator to the list of operators already applied.

3. Go to Step 1.

STRIPS Representation
• Planning can be considered as a logical inference problem:

– a plan is inferred from facts and logical relationships.

• STRIPS represented planning problems as a series of state descriptions and
operators expressed in first-order predicate logic.

represent the state of the world at three points during the plan:

– Initial state, the state of the world at the start of the problem;

– Current state, and

– Goal state, the state of the world we want to get to.

Operators are actions that can be applied to change the state of the world.

– Each operator has outcomes i.e. how it affects the world.

– Each operator can only be applied in certain circumstances. These are
the preconditions of the operator.

Representing Operators
• STRIPS operators are defined as:

– NAME: How we refer to the operator e.g. go(Agent, From, To).

– PRECONDITIONS: What states need to hold for the operator to be
applied. e.g. [at(Agent, From)].

– ADD LIST: What new states are added to the world as a result of
applying the operator e.g. [at(Agent, To)].

– DELETE LIST: What old states are removed from the world as a
result of applying the operator. e.g. [at(Agent, From)].

