
Knowledge based

Humans use heuristics a great deal in their
problem solving. Of course, if the heuristic
does fail, it is necessary for the problem solver
to either pick another heuristic, or know that
it is appropriate to give up. The rules, found in
the knowledge bases of rule-based systems,
are very often heuristics.

Expert system programming is distinctively
different from conventional programming.

Whereas one could describe a conventional
program (or at least, the part of it that produces the
results, as opposed to the user interface, etc) in these
terms:

Program = algorithm + data

One would have to describe an expert system in
these terms:

Expert system = inference engine + knowledge base +
data.

Knowledge based expert systems

Inferencing

The inference engine uses one of several
available forms of inferencing.

By inferencing means the method used in
a knowledge-based system to process the
stored knowledge and supplied data to
produce correct conclusions.

Example

How old are you?

Subtract the year you were born in from 2014.

The answer will either be exactly right,

or

one year short.

Multiple solutions.

In planning or design tasks, a single
solution will probably be enough.

In diagnostic tasks, all possible solutions
are probably needed.

Reasoning with uncertainty.

Rules in the knowledge base may
only express a probability that a conclusion
follows from certain premises, rather than a
certainty.

This is particularly true of medicine and
other life sciences.

Forward chaining

Forward chaining working from the facts to a
conclusion. Sometimes called the data driven
approach. To chain forward, match data in
working memory against 'conditions‘ of rules in
the rule-base.

Starts with the facts, and sees what rules
apply (and hence what should be done) given the
facts.

How is it works

Facts are held in a working memory

Condition-action rules represent actions to take when
specified facts occur in working memory.

Typically the actions involve adding or deleting facts from
working memory.

Steps in FC

• To chain forward, match data in working
memory against 'conditions' of rules in the
rule base.

• When one of them fires, this is liable to
produce more data.

• So the cycle continues up to conclusion.

Example

• Here are two rules:

• If corn is grown on poor soil, then it will get
blackfly.

• If soil hasn't enough nitrogen, then it is poor
soil.

Forward chaining: This soil is low in nitrogen;
therefore this is poor soil; therefore corn
grown on it will get blackfly.

More realistically,

“there's something wrong with this corn.
So I test the soil. It turns out to be low in
nitrogen. If that’s the case, corn grown on it
will get blackfly. Therefore the problem is
blackfly caused by low nitrogen”

Backward chaining

Backward chaining: working from the
conclusion to the facts. Sometimes called the
goal-driven approach.

Starts with something to find out, and
looks for rules that will help in answering it
goal driven.

• To chain backward, match a goal in working
memory against 'conclusions' of rules in the
rule-base.

• When one of them fires, this is liable to
produce more goals.

• So the cycle continues

Steps in BC

Example

• Same rules:

• If corn is grown on poor soil, then it will get
blackfly.

• If soil hasn't enough nitrogen, then it is poor soil.

Backward chaining: This corn has blackfly;
therefore it must have been grown on poor soil;
therefore the soil must be low in nitrogen.

More realistically,

“The BC reasoning would be: there's
something wrong with this corn. Perhaps it
has blackfly; if so, it must have been grown on
poor soil; if so, the soil must be low in
nitrogen. So test for low nitrogen content in
soil, and then we'll know whether the
problem was blackfly.”

FC or BC

The choice of strategy depends on the

nature of the problem.

Assume the problem is to get from facts

to a goal (e.g. symptoms to a diagnosis)

IF BC

Backward chaining is the best choice if: The
goal is given in the problem statement, or can
sensibly be guessed at the beginning of the
consultation;

or:

The system has been built so that it
sometimes asks for pieces of data (e.g. "please
now do the gram test on the patient's blood, and
tell me the result"), rather than expecting all the
facts to be presented to it.

Reasons

This is because (especially in the medical

domain) the test may be

1. expensive,

2. or unpleasant,

3. or dangerous for the human participant

so one would want to avoid doing such a test

unless there was a good reason for it.

IF FC

Forward chaining is the best choice if:

All the facts are provided with the problem
statement;

or:

There are many possible goals, and a smaller
number of patterns of data;

or:

There isn't any sensible way to guess what the
goal is at the beginning of the consultation.

Which is better

If you have clear hypotheses, backward
chaining is likely to be better.

Diagnostic problems or classification
problems Medical expert systems Forward
chaining may be better if you have less clear
hypothesis and want to see what can be
concluded from current situation.

Mixed Chaining

Some systems use mixed chaining, where
some of the rules are specifically used for
chaining forwards, and others for chaining
backwards.

The strategy is for the system to chain in
one direction, then switch to the other
direction, so that: the diagnosis is found with
maximum efficiency; the system's behaviour is
perceived as "human".

Best for expert systems

A backwards-chaining system tends to
produce a sequence of questions which seems
focussed and logical to the user,

A forward-chaining system tends to produce
a sequence which seems random & unconnected.

If it is important that the system should seem
to behave like a human expert, backward
chaining is probably the best choice.

Example

R1: IF hot AND smoky THEN fire

R2: IF alarm_beeps THEN smoky

R3: If fire THEN switch_on_sprinklers

F1: alarm_beeps [Given]

F2: hot [Given]

R1: IF hot AND smoky THEN ADD fire

R2: IF alarm_beeps THEN ADD smoky

R3: If fire THEN ADD switch_on_sprinklers

F1: alarm_beeps [Given]

F2: hot [Given]

Example

R1: IF hot AND smoky THEN ADD fire
R2: IF alarm_beeps THEN ADD smoky
R3: If fire THEN ADD switch_on_sprinklers

F1: alarm_beeps [Given]
F2: hot [Given]
F3: smoky [from F1 by R2]
F4: fire [from F2, F4 by R1]
F5: switch_on_sprinklers [from F4 by R3]

Example

For BC

Should I switch the sprinklers on?

F1: alarm_beeps [Given]

