Problem \& Solution

E V O L A 1

If $A=3 \& \& 5<L<0<V<E<10$

If $A=3 \& \& 5<L<O<V<E<10$ Value of I ?

SRM CSE

 ODDConstrains : $0<=\{S, R, M, C, S, E, O, D\}<=9$
IF
$S, R, M=2,3,4$

What is/are ODD?
234+721=955
234+621=855

SRM CSE

GOOD

Constrains : $0<=\{S, R, M, C, S, E, O, D\}<=9$ IF
$(G=1) \& \&(S=7)$
$756+473=1229$
735+274=1009
How many GOOD(S)?
$734+275=1009$
753+476=1229
$793+872=1665$
$792+873=1665$

LOCK KEYS
 DOOR

Constrains : $0<=\{L, O, C, K, E, Y, S, D, R\}<=9$

LOCK
 KEYS

DOOR

Constrains : $0<=\{L, O, C, K, E, Y, S, D, R\}<=9$

Satisfactions : 1638+8027=9665 Satisfactions : 2617+7048=9665 Satisfactions : 1956+6038=7994 Satisfactions : 1956+6042=7998
Satisfactions : 2381+1956=4337 Satisfactions: 2381+ ? = ?

Constraint Satisfaction

Constraint Satisfaction

- Many AI problems can be viewed as problems of constraint satisfaction.

Constraint Satisfaction

- As compared with a straightforward search procedure, viewing a problem as one of constraint satisfaction can reduce substantially the amount of search.

Constraint Satisfaction

- Operates in a space of constraint sets.
- Initial state contains the original constraints given in the problem.
- A goal state is any state that has been constrained "enough".

Constraint Satisfaction

Two-step process:

1. Constraints are discovered and propagated as far as possible.
2. If there is still not a solution, then search begins, adding new constraints.

Constraint Satisfaction

Two kinds of rules:

1. Rules that define valid constraint propagation.
2. Rules that suggest guesses when necessary.

Constraints

- The simplest type is the unary constraint, which constraints the values of just one variable.
- A binary constraint relates two variables.
- Higher-order constraints involve three or more variables. Cryptarithmetic puzzles are an example:

$$
\begin{array}{r}
T W O \\
+T W O \\
\hline F O U R
\end{array}
$$

Cryptarithmetic puzzles

- Variables: $F, T, U, W, R, O, X_{1}, X_{2}, X_{3}$
- Domains: $\{0,1,2,3,4,5,6,7,8,9\}$
- Constraints:
- Alldiff (F,T,U,W,R,O)
$-O+O=R+10 \cdot X_{1}$
$-X_{1}+W+W=U+10 \cdot X_{2}$
$-X_{2}+T+T=O+10 \cdot X_{3}$
T Wo
$-X_{3}=F, T \neq 0, F \neq 0$

If $2+2=4, F=1$, then how many four

$$
\begin{array}{ll}
& 938+938=1876 \\
\text { TWO } & 928+928=1856 \\
\text { TWO } & 867+867=1734 \\
846+846=1692 \\
& 836+836=1672 \\
\text { FOUR } & 765+765=1530 \\
734+734=1468
\end{array}
$$

Map Colo(u)ring

Tasmania

Map Coloring

(T)

Map Coloring

- Idea:
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

WA	NT	Q	NSW	V	SA	T

Tasmania

Map Coloring

- Idea:
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Map Coloring

- Idea:
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Map Coloring

- Idea:
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Solution?

$$
\begin{aligned}
& \mathrm{WA}= \\
& \mathrm{NT}= \\
& \mathrm{Q}= \\
& \mathrm{NSW}= \\
& \mathrm{V}= \\
& \mathrm{SA}= \\
& \mathrm{T}=
\end{aligned}
$$

Tasmania

SEND + MORE = MONEY

SEND + MORE = MONEY

1. We have to find values for S, E, N, D, M, O, R, Y (8 digits out of 10). Now, we're adding 24 digits numbers. Since 9999+9999 < 20000, M cannot be >=2. And by the "usual rules" for this kind of question, it can't be 0 . So $\mathrm{M}=1$.

SEND + MORE = MONEY

2. Now, looking at the fourth (left-most) column, we have either $\mathrm{S}+1>=10$ (if there's no carry) or $1+S+1>=10$ (if there's carry). So $S=8$ or 9 , and $O=0$ or 1 . Since 1 is already taken, $\mathrm{O}=0$ (just as well that, or the typography would get confusing).

SEND + MORE = MONEY

3. In the third column, we can't have $\mathrm{E}+0=\mathrm{N}$ (no carry), so $\mathrm{E}+1=\mathrm{N}$ and there's carry from the second column. So in the second column either $N+R=10+E=9+N$, and $R=9$, or there's carry and $1+N+R=10+E=9+N$, and $R=8$. So $R=8$ or 9 , just like S.

SEND＋MORE＝MONEY

4．IF $S=8$ and $R=9$ ， we＇re looking at

8END
＋109E
＝ニニニニニ＝
10NEY

SEND + MORE = MONEY

5. But this cannot possibly work: we need to get either $\mathrm{E}+0=10+\mathrm{N}$ or $1+\mathrm{E}+0=10+\mathrm{N}$ in the third column, to get carry in the fourth column. Neither is possible (we've already used up both 9 and 0). So...
$S=9$ and $R=8$.
We're looking at

9END
$+108 \mathrm{E}$
======
10NEY
6. We've already used up the digits $0,1,8,9$, and $\mathrm{N}=\mathrm{E}+1$, so the only choices for E are 6,5,4,3,2.
7. We know we must have carry from the first column into the second, so $D+E>=10$. D is at most 7 , so we immediately rule out $\mathrm{E}=2$
($7+2<10$). Also $\mathrm{E}=3$ is impossible (because then either $\mathrm{D}=7$ and $\mathrm{Y}=0=0$, or $\mathrm{D}<7$ and $E+D<10$, both of which are impossible).

SEND + MORE = MONEY

8. If $\mathrm{E}=4$, then $\mathrm{D}=7$ or $\mathrm{D}=6$ don't work (because then $Y=1$ or $Y=0$, and both are already taken), and $\mathrm{D}<6$ doesn't work because then $\mathrm{E}+\mathrm{D}<10$. 9. If $\mathrm{E}=6$ then $\mathrm{N}=7$, so $\mathrm{D}<=5$. But $\mathrm{D}=5$ yields $Y=1$ and $D=4$ yields $Y=0$, both taken, and $D<=3$ gives $\mathrm{E}+\mathrm{D}<10$.

SEND＋MORE＝MONEY

10．So $\mathrm{E}=5$ and $\mathrm{N}=6$ ． $\mathrm{D}=7$（the alternative， $\mathrm{D}<=4$ ， is again too small），so $\mathrm{Y}=2$ and the solution is

9567
＋ 1085
＝ニニニニニ
10652

Initial state:

- No two letters have the same value.
- The sum of the digits must be as shown.

