
A * Algorithm

A * algorithm

A* is a type of search algorithm. Some problems
can be solved by representing the world in the initial
state, and then for each action we can perform on the
world we generate states for what the world would be
like if we did so.

If you do this until the world is in the state that we
specified as a solution, then the route from the start to
this goal state is the solution to your problem.

Use of state space search to find the shortest path
between two points (path finding).

Heuristics and Algorithms

At this point we need a heuristic to help us cut
down on this huge search problem. What we need is to
use our heuristic at each node to make an estimate of
how far we are from the goal.

In path finding we know exactly how far we are,
because we know how far we can move each step, and
we can calculate the exact distance to the goal.

For example, in 8-puzzle there is no known
algorithm for calculating from a given position how
many moves it will take to get to the goal state. So
various heuristics have been devised.

8 Puzzle

This is a simple
sliding tile puzzle on a
3*3 grid where one tile
is missing and you can
move the other tiles
into the gap until you
get the puzzle into the
goal position.

Example

• Pathfinding in gaming

The A* algorithm will not only find a path, if
there is one, but it will find the shortest path. A
state in pathfinding is simply a position in the
world.

some other path finding scenario, you want
to search a state space and find out how to get
from somewhere you are to somewhere you
want to be, without bumping into walls or going
too far.

Goal

Start

A * Operation

At the operation of the A* algorithm. What we need to
do is start with the goal state and then generate the graph
downwards from there. We ask how many moves can we
make from the start state? The answer is 2, there are two
directions we can move the blank tile, and so our graph
expands.

If we were just to continue blindly generating
successors to each node, we could potentially fill the
computer's memory before we found the goal node.
Obviously we need to remember the best nodes and search
those first. We also need to remember the nodes that we
have expanded already, so that we don't expand the same
state repeatedly.

Goal

open open

Start open

open open

Goal

open closed

Start open

open open

Goal

open closed

Start open

open open

Goal

open open open

open closed open

Start open open

open open

Goal

open open open

open closed closed

Start open open

open open

Let's start with the OPEN list. This is where we
will remember which nodes we haven't yet
expanded.

When the algorithm begins the start state is
placed on the open list, it is the only state we
know about and we have not expanded it.

So we will expand the nodes from the start
and put those on the OPEN list too. Now we are
done with the start node and we will put that on
the CLOSED list. The CLOSED list is a list of nodes
that we have expanded.

Using the OPEN and CLOSED list lets us be
more selective about what we look at next in
the search.

We want to look at the best nodes first.
We will give each node a score on how good
we think it is. This score should be thought of
as the cost of getting from the node to the
goal plus the cost of getting to where we are.

f = g + h
Traditionally this has been represented by the letters f,

g and h.
1. 'g' is the sum of all the costs it took to get here,
2. 'h' is our heuristic function, the estimate of what it

will take to get to the goal.
3. 'f' is the sum of these two. We will store each of

these in our nodes.
Using the f, g and h values the A* algorithm will be

directed, subject to conditions we will look at further on,
towards the goal and will find it in the shortest route
possible.

So far we have looked at the components of the A*, let's
see how they all fit together to make the algorithm :

A* pseudocode

Steps

1.Create a search graph G,consisting solely of the start
node s.Put s on a list called OPEN.

2 .Create a list called CLOSED that is initially empty.

3.LOOP:if OPEN is empty,exit with failure.

5

4.Select the first node on OPEN,remove it from
OPEN and put it on CLOSED.Call this node n.

5.If n is a goal node,exit successfully with the solution
obtained by tracing a path along the pointers from
n to s in G.

6.Expand node n,generating the set,M,of its
successors

and install them as successors of n in G.

6

7. Establish a pointer to n from those members of M
that were not already in G(I .e, not already on either
OPEN or CLOSED). Add these members of M to
OPEN.For each member of M that was already on
OPEN or CLOSED,decide whether or not to redirect
its pointer to n.For each member of M already on
CLOSED,decide for each of its descendents in G
whether or not to redirect its pointer.

8. Reorder the list OPEN,either according to some scheme
or some heuristic merit.

9. Goto LOOP

7

A* search

To avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to goal

Functions used in the algorithm:
Evaluation Function f(n):At any node n,it estimates the sum of

the cost of the minimal cost path from
the start node s to node n plus the cost
of a minimal cost path from node n to a
goal node.

f(n)=g(n)+h(n)

Where g(n)=cost of the path in the search tree from s to n;
h(n)=cost of the path in the search tree from n to a goal node;

Function f ‘ (n):At any node n,it is the actual cost of an optimal path
from node s to node n plus the cost of an optimal
path from node n to a goal node.

f ‘ (n)=g’ (n)+h ‘ (n)

Where g’ (n)=cost of the optimal path in the search tree from s to n;
h’ (n)=cost of the optimal path in the search tree from n to a

goal node;

3

4

h’ (n):It is the cost of the minimal cost path from n to a goal node
and any path from node n to a goal node that acheives h*(n)
is an optimal path from n to a goal.

h is an estimate of h ’.

h(n) is calculated on the heuristic information from the problem domain.

A Graph search tree:

Here the Starting node S is represented in RED
and the goal node is represented in GREEN.

Our aim is to reach the goal node G by tracing
out the algorithm described.

10

F(n)=g(n)+h(n)

Calculating the f value for each of the following
nodes,
we get f as:

A: 1+5+3=9

B:3+4+7=14

C:10+6+7=23

D:1+5+3=9

E:3+4+7 (10+6 is not minimal so not taken)

F:the goal node G cannot be reached from F 13

